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Two different clouds of particles are considered in simulations, characterized by a different 

-

dimensional Stokes number (St). 

Periodic boundary conditions are imposed on particle moving outside the computational domain 

in stream-wise and span-wise directions, so they are reintroduced via periodicity. 

 

 

 

          Figure 4: Turbulent structures and particle interactions in boundary layer. 

 

The complex interaction between the particle phase and the fluid flow give rise to the formation 

of structures in the boundary layer as shown in Figure 4. Surfaces of  iso-Q values (red 

corresponding to 1000 and blue to -1000 values), where Q is the second invariant of the velocity 

gradient, are reported only for the lower half of the channel. Very intense turbulent structures are 

formed in the turbulent boundary layer, allowing turbophoresis to promote an accumulation of 

particles on the wall. This accumulation, however, is not uniform: particles tends to allineate 

along the streamwise direction. This kind of observations is very important to characterize the 

accumulation and segregation of coal particles onto the surface of a gasifier, being these 

phenomena responsible of the conversion degree and the emission level of polluttant species. 

Further investigations will be conducted to include the effects of the properties of the bounding 

walls on the particles-wall interaction.  

In Figure 5 is shown a top view of the bottom wall of the channel for particle cloud with St=25. 

In this figure only particles close to the wall (distance lower than 4mm) are shown so it is 

possible to recognize the particle and boundary layer interaction. In that figure it is possible to 

see different particle concentration along the span-wise direction. This is due to the presence of 

turbulent eddies near the wall that are affecting to the particle concentration. This phenomenon is 

not possible to be caught by a RANS method. 

 













 29 

Simulations of a proton beam impinging on a homogeneous target, have been performed varying 

the beam energy, the target material and the incidence angle. For every simulation a job 

composed by 100 parallel cycles of 10 runs of 100.000 primary particles, equivalent to a single 

run of 100.000.000 of primary particles, has been submitted. The Cresco serial queues 

cresco_serh48 and cresco_serh144 have been used for an average time of 17 hours per job and a 

storing space of 33 Gb per job for an equivalent total time of 21.2 years, which shows that 

without the Cresco facility (or equivalent) this development cannot be carried on. 

 

Discussion and results 

The work aimed at an analytical way of describing the dose distribution in a heterogeneous 

material, starting from Monte Carlo simulations of a proton beam impinging in water and in 

other materials. The presence of heterogeneity affects the proton range penetration, so water 

equivalent density is generally used for computing the dose distribution. The water equivalent 

density accounts for the different stopping powers of the crossed media. Data in water can be 

used as benchmark in order to reproduce dose distributions in other materials, using the water 

equivalent density. In order to find the analytical function for dose description, several steps 

have to be done and this work [3] is the starting way to face this problem:  

1) the deposited dose along the beam axis (Bragg curve) in several materials has to be 

represented in terms of analytical Bragg curve. A suitable analytical way of reproducing the 

deposited energy integrated over the transverse plane in water has been presented for several 

beam energies and generalized for any energy. For example, in Figure 1 is represented the 

analytical model of the integrated deposited energy in bone for a 200 MeV proton beam, 

obtained starting from the integrated deposited energy FLUKA data in water. 

 

 

Figure 1: Analytical model (in black) of the integrated deposited energy along the beam axis (in 

blue); for comparison the integrated deposited energy in water (in red) is also shown. 
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1. Unveiling protein functions through the synchronization dynamics of the protein-protein 

interaction network (PIN). 

One of the fundamental challenges that biologists are facing nowadays is to elucidate the 

function of the millions of proteins that are being added to the databases due to the great progress 

in sequencing the genome [1]. Knowing the protein or proteins involved in one specific 

molecular function is essential to understand the biological processes within the cell and to 

ultimately design new proper drugs to cure diseases. The problem is only going to get worse: 

determining the sequence of a protein becomes easier and cheaper everyday, but determining the 

function remains hard, slow and expensive.  

The recent availability of the networks of the physical interactions between proteins has made 

possible to introduce computational methods to tackle this problem, allowing to predict the 

function of a protein based on the structure of the network of the neighboring proteins whose 

function is known. With this motivation, we intended to offer a completely new strategy, based 

on the established knowledge on the organization of synchronization properties in a modular 

network of oscillators [2]. The results we have obtained with the protein interaction network of 

the yeast are groundbreaking, insofar as they show with clear evidence how a dynamical 

approach to the analysis of biological networks is able to identify proteins whose function was 

wrongly assigned or to predict multiple functions for proteins exhibiting a particular dynamical 

behavior within the network (see Figure 1). Moreover, our approach is able to furnish a novel 

description of the meta-organization of a cell [3] as shown in Figure 2.  

 

2. Node vulnerability under finite perturbations in complex networks. 

In the study of complex networks, a very important concept is that of vulnerability of the global 

behavior or performance under the action of external perturbations. The classical approaches to 

vulnerability focus on how certain topological graph properties change after accidental (random) 

or intentional removal of nodes or links. In a recent work, we introduce an alternative approach, 

based on the dynamics taking place on the network [4]. Specifically, we study how fast the 

network dynamics abandons a collective (synchronized) state under the action of finite size 

perturbations applied on individual nodes, and how this depends on the centrality of the 

perturbed node. In simple words, the question we posed to ourselves is the following: if an 

attack, failure or large fluctuation in a node abruptly disrupts the collective behavior of a large 

ensemble of dynamical systems, how is the destructiveness of the perturbation related to the 

topological importance of the node in the network? 

To address this issue, we consider three dynamical systems of chaotic Rössler oscillators coupled 

following three well-known different topologies (an Erdös-Rényi random graph, a Barabási-

Albert scale-free network, and a Configuration Model scale-free network). The system is 
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synchronizable, and the coupling parameter is chosen so as to guarantee that the synchronized 

dynamics is slightly linearly unstable.  We define local and global divergence rates of the 

perturbed to the unperturbed dynamics to measure the vulnerability of the system under the 

perturbations. 

  

Figure 1: Identification of multi-functional proteins.(A) Dynamical indicators for the 2,049 proteins in 
the PIN of the yeast. The color indicates the functional module initially assigned to each protein 
(orange=transcription, green=translation, black=rest). The 30 proteins located inside the circle remain 

there after re-assignation to the predicted function, and are depicted as circles bordered with the color of 
that function. (B) Visualization of the network backbone made of 6 (out of 30) of the multi-functional 

proteins in (A).  

 

 

Figure 2: Coarse grained representation of the PIN in terms of cell functioning and coordination. The 

size of nodes is proportional to the total number of proteins participating to the corresponding function, 
the width of the links is proportional to the size of the corresponding overlapping interface.  
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Surprisingly, the results turn out to be quite independent of the topological details. The global 

divergence rates show a very distinct yet non-trivial dependence on the centrality (see Figure 2), 

which is further defined by the degree centrality, so can be said to be largely dependent only on 

local (first neighbors) properties. On the one hand, the most isolated nodes (ISOL, in the figure) 

are the most vulnerable, whereas more central nodes (MEDIUM) are less and less vulnerable as 

we go along the centrality axis (degree centrality in Figure 3 A, eigenvector centrality in Figure 

3 B). At some point, however, the trend is reversed, and vulnerability and centrality become 

positively correlated variables. The hubs of the network are more vulnerable than the nodes of 

intermediate connectivity. 

 

 

 

Figure 3: Dependence of the dynamical vulnerability on the centrality of the perturbed node. Minimum of 

the divergence rate as a function of degree (A) and eigenvector centrality (B) for all three networks under 
study. 

 

The mechanism underlying such dependence of the vulnerability on the centrality must be 

related to the way the perturbations propagate over the network. The local divergence rates were 

used to further elucidate the issue. The high vulnerability of the isolated nodes is seen to be due 

mainly to the fact that the perturbed node hardly suffers from any damping, so even though the 

propagation is relatively slow and irregular its effect does not dissipate and is very destructive 

since the beginning. For nodes of intermediate connectivity the damping becomes stronger, and, 

whereas the propagation is also more effective and homogeneous, still the stabilizing influence 

of the rest of the network prevails. For the hubs, the propagation becomes so efficient that it 

outweights the stabilizing effect of the many neighbors they have, and then the perturbation 

applied on them is more destructive than applied on nodes of intermediate connectivity. A 

schematic illustration is shown in Figure 4. 

Relevant applications of our approach and results can be found in technological or infrastructural 

networks, where a practical issue if often to desing the better protection strategy for each on of 

the units to avoid the spreading over the system of an occasional breakdown or intentional 

attack, or in the disruption of pathological synchronized activity in the central nervous system by 

external action (applied or magnetically induced current pulses). 
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Figure 4: Interpretation of results. The observed relationship between dynamical vulnerability and 
centrality is interpreted to result from the interplay between two opposing forces: damping (the 

stabilizing effect of the unperturbed elements in the network) and propagation (the spreading of the 
perturbation), assumed to vary in importance across the centrality axis roughly as schematically shown 
in the figure.  

 

3. Emergence of structural patterns in networks of synchronized oscillators with 

competitive interactions. 

Synchronization occupies a privileged position in the study of emergent collective phenomena 

because of its ubiquity in the natural world. Furthermore, many real world networks, such as 

biological neural networks or social networks, are known to be adaptive: links between nodes are 

enhanced or depressed depending on the dynamics. Hence our interest in the structural properties 

emerging from synchronized dynamics in adaptive networks. 

To address this issue, we study a weighted network of Kuramoto oscillators topologically regular 

whose coupling weights evolve in time following two opposing adaptive mechanisms [5]. The 

first one, known as Hebbian learning in neuroscience and as homophily in sociology, consists in 

the reinforcement of link weights for  dynamically correlated neighboring oscillators. As 

reinforcement without bound is not realistic (for instance in networks of neurons, the 

enhancement of some synapses is compensated by the weakening of others), the opposing 

mechanism, homeostatic plasticity, is also implemented in the weight equations. Two parameters 

the dynamical correlation. 

As soon as the adaptive mechanism is switched on, the global synchronization is rapidly 

enhanced in the network. Most interestingly, after the system is allowed to reach a stationary 

classical Kuramoto model (incoherent evolution of the oscillators, global synchronization), there 

emerges through adaptation another phase corresponding to a large region of parameter space in 

which the global synchronization is still low, but the local synchronization of each oscillator with 
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its neighbors is almost perfect (see Figure 5). In this phase, a detailed analysis of the network 

resulting from adaptation reveals a distinct self-organization of the network into communities of 

highly synchronized oscillators (Figure 6). Moreover, a distinct scale-free distribution of the 

increasing coupling (Figure7). 

 

 

 

Figure 5: Global and local synchronization. In the top panels, the global synchronization, r, (Kuramoto 

order par
At time t = 0 the adaptive mechanism is switched on. Below, the mean global synchronization and local 

synchronization, rlink, are shown as a function of both parameters. The region bounded by the two dashed 
lines correspond to the phase of high local synchronization and low global synchronization. 

 

In conclusion, as a result of adaptation, two properties, such as modularity and scale-freeness, 

that have been observed in many real world networks, are seen to emerge from synchronization. 

Preliminary work with a similar model suggest that the emergence of these properties remains 

essentially unaltered under changes in the model equations as long as the weight equations 

implement the interplay between the two  opposing adaptive mechanisms.  
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Figure 6: Modularity as a result of adaptation. The network is seen to be clusterized into communities of 
tightly synchronized oscillators in the phase of high local synchronization and low global synchronization 

(on the left, two communities are  shown in (A) and three in (B)). The modularity in the network as 
measured by the modular cohesion throughout parameter space is shown in (C).   

 

4. Synchronization of neurons in geometrical complex network. 

Recently, the study of complex networks has been devoted a great deal of attention, since an 

increasing number of real world systems have been seen to be successfully described by them. 

However, most of these studies do not consider the fact that, in many cases, real complex 

networks are embedded in geometric space. Examples can be found in all scientific and technical 

areas, such as the Internet, power grids, epidemic spreading over contact networks, social 

relationships or neural connectivity.  Very recent studies include space-dependent generative 

models of networks to explain the origin of experimentally observed connectivity in biological 

neural networks, specifically in the topology of the C. elegans neural network.  

The additional special features that the network acquires when the spatial positions of nodes is 

considered are relevant for the global properties of the network, but they have been studied on 

very few occasions. For instance, the impact of modularity in the behavior of complex networks 

is receiving much attention on the part of scientists, but the fact that in most cases the formation 

of modules has its origin in spatial proximity is not properly considered. As for dynamics on 

networks, synchronization has proved to be a most relevant kind of collective dynamics in 

complex network as a mechanism for information transmission. Again, so far very few works 

have focused on the importance of the spatial structure for the dynamical behavior of complex 

systems in general, and their synchronization in particular.  

In this work we study the synchronization properties of a spatial network of neurons [6]. We 

consider the topology of the network generation spatial model, its dynamical properties, and the 

relation between topology and function. We observe the emergence of synchronization waves in 

the system as a distinct dynamical feature of the spatial network (Figure 8).  
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Figure 7: Weight distribution resulting from adaptation. Link weight distribution for integration time T 

= 100 -free. For increasing 
coupling, a maximum emerges and the distribution gradually changes into a homogeneous network for 
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Figure 8: Apparition of waves in the system. Over a sample networks generated with N=500, < 

The inactive neurons are empty circles, whereas full circles represent the spiking neurons. 

 

 

 

Figure 9: Correlation between dynamics and topology. (Left) S (blue), Sr (green; local synchronization) 

and Sw=Sr-
Average correlation between the topological and functional centrality vectors. We see that there is a 
maximum correlation when Sw is maximum, that is, with synchronization waves dynamics. 
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Figure 2: Jobs CPU times for an yearly meteorological simulation. Blue means that job was dispatched 

on cresco2 machines, red means that job run on cresco1. 

 

In Figure 2 jobs CPU times for an yearly meteorological simulation are shown. The yearly run 

was divided into 10 days simulation jobs. Parallel jobs were principally dispatched on cresco2 

machines. Only few jobs run on cresco1, with slightly longer CPU times. 

In Figure 3 an example of calculated meteorological fields is shown. As a first test of RAMS 

results, calculated fields were compared, over all the Regional sub-domains, with monthly and 

annual indicators calculated by Italian Superior Institute for Environmental Protection and 

Research (ISPRA) in the framework of SCIA database (http://www.scia.sinanet.apat.it). 

Comparison was made for main meteorological variables and a general good agreement between 

observed and simulated data was observed. 

During 2010 a systematic validation of all meteorological fields (1999, 2003, 2005, 2007) 

calculated in the frame of MINNI project  was planned and observed data were collected from 

Italian Regional Meteorological Networks. An exhaustive validation of 2005 MINNI 

meteorological fields has been carried out on meteorological data set from Regional Center of 

Environmental Modeling of ARPA Friuli Venezia Giulia. Validation results were presented  in 

June 2010 at the 13th International Conference on Harmonisation within Atmospheric 

Dispersion Modelling for Regulatory Purposes [5]. 
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Figure 3: Annual mean temperature (°C): comparison between calculated fields (4x4 km2 resolution) and  

observations from the ISPRA-SCIA database (colored symbols). 

 

Inventory and emission pre-processing: pollutants emission processor EMMA 

The used anthropogenic emission inventory has been derived from the emissions from major 

point sources and from the diffuse sources at provincial level provided by national emission 

inventories [6]. These emissions are classified according to activity level CORINAIR/SNAP 

(CO-oRdinated INformation on the Environment in the European Community AIR / Simplified 

Nomenclature for Air Pollution). EMEP emission inventories for years 1999 and 2005 have been 

employed to describe the anthropogenic sources located in other countries included in the 

computational domain. The biogenic emissions had also two sources: APAT 2000 over Italy and 

a global Guenther database [7] for the other countries. The emissions fields also include the 

maritime activities, the ship emissions on the national and international sources and the port 

areas. The diffuse emissions and the minor point sources are distributed in the lowest model 

layers of FARM (below 50 m) with 80% in the first 20 m above ground. The point sources such 

as industries, power plants, volcanoes, etc., are treated individually in FARM, considering the 

plume rise effects. 

The time modulation has been accounted for all sources as well: we assigned at each SNAP 

activity its characteristic modulation curve, allowing the determination of hourly mean emission. 

We provided three curves for each SNAP sector, representing daily, weekly and monthly 

variations. 
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With respect to the past simulations, we introduced two other sources of particulate matter (PM): 

the re-suspension due to road and highway traffic and the emissions from farmlands soils; for the 

last one, we used an estimate of the emission factors performed through a targeted measurement 

campaign [8].Moreover, we changed the spatial disaggregation of vehicular emissions, by taking 

more account of the population distribution through some suitable weights; in such a way, traffic 

emissions nearby urbanized area look more realistic. 

A map of NO2 emissions, averaged on the whole 2005 year, has been depicted in Figure 4, 

where we can see the impact of both most relevant urban areas and highways. 

 

 

 

Figure 4: Yearly averaged (2005) emissions of NO2. 

 

Application of the chemical dispersion model FARM 

We used the model FARM (Flexible Air quality Regional Model) [4], which is a three-

dimensional Eulerian model that accounts for the transport, chemical conversion and deposition 

of atmospheric pollutants, by assuming a K-type turbulence closure. The code has been derived 

from STEM [9]. Gas-phase photochemical reactions are described by means of SAPRC-90 

chemical scheme [10] and aerosol dynamics is described with the modal AERO3 scheme, which 

is the same module implemented in the Community Multiscale Air Quality (CMAQ) modeling 

system [11].  

For both 2003 and 2005 years, we conducted one simulation over the whole Italy (IT) with a 

horizontal resolution of 20x20 km
2
 and 16 vertical levels up to 10 km, densest near the ground. 

Both the initial and boundary conditions have been provided by EMEP fields at 50 km horizontal  
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Figure 2: Density at X= 0.0093 m and X= 0.0375 m. 

 

supersonic air crossflow, and forcing development of three-dimensional shock structures (see 

Fig. 3a). In fact, the interaction between fuel jet and supersonic crossflow produces coherent 

structures such as horseshoe vortices, jet-shear layer vortices, contra-rotating vortex pairs and 

wake vortices. These structures are very important because of their role in enhancing fuel-air 

mixing. In Figure 3a color mapping shows H2O already present upstream the fuel injection. The 

3D features of vortex structures in its side view are visualized by the instantaneous isosurfaces of 

the streamwise in Figure 3b. These isosurfaces are colored in red and green, and represents 

clockwise and counter-clockwise rotating vortices with axis in the streamwise direction.  

 

 
      

Figure  3 a): Isocontour of pressure at 181 KPa, slice of H2O; b) Isosurfaces of the z component 

of filtered vorticity. 
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Due to these structures, hydrogen is convected outwards, toward the two eddies in-between the 

two H2 streams. Figure 4a shows the two-dimensional pressure contours from the side view near 

the H2 inlet region. 

due to the high pressure region in front of the jet hole bends forward in the near wall region. 

 

 

 
 

Figure  4  a): Contour of pressure; b) Contour of H2 mass fraction. 

 

Figure 4b shows the mass fraction contour of the H2 that penetrates in the flow-stream and 

propagate upstream along the boundary layer.  

  

Preliminary Conclusions 

In this work, a 3D LES of the HyShot scramjet combustor has been done by means of a hybrid 

numerical scheme, a highly refined grid and a detailed kinetic scheme. Results point out 

combustion is very efficient: the flame anchors upstream the flow injection, within the 

recirculation zone between the bow shock and the fuel injection: the bow shock is located about  

10 mm from the H2 orifices. Mixing is very predicted to be very fast, in particular contra-rotating 

vortices within the H2 core flow improve the turbulent diffusion of H2 while eddies between the 

[initially] separate fuel streams are responsible for the fast air/ H2 mixing. The flame structure is 

Favored also by the high initial temperature, kinetics is very fast. Combustion efficiency 

calculated by the unburned H2 mass fraction (only 0.5% at the combustor exit) is ~ 99.5%. 

Future work will include testing other kinetic schemes.  
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